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Abstract--This paper presents a computational investigation on the influence of the meso- (inter-tow; ~b,) 
and micro-scale (intra-tow; ~,) porosities on the effective transverse permeability (Kp) of square arrays 
of permeable fiber tows. The equations governing Stokes flow are solved, using the Boundary Element 
Method, in unit cells which consist of a number of fiber-like filaments, arranged in square packing within 
the circular perimeter of the tow. The key finding of this study is that the permeability ratio (Kp/KO, where 
(Ks) is the permeability of the corresponding square array of impermeable tows, can be described as a 
power-law function of the effective intra-tow porosity (X). Based on this, a scaling is proposed according 
to which the computational results for Kp at relatively low values of the inter-tow porosity 
(0.25 < ~b~ < 0.5) collapse on a power-law curve with exponent 2.1 when plotted against (Z). Copyright 
© 1996 Elsevier Science Ltd. 
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i. I N T R O D U C T I O N  

Recent years have seen significant advances in the theoretical description of  flow of  polymeric resins 
(Pillai et al. 1993; Skartsis et al. 1992) or molten metals (Nagelhout et al. 1995) through fibrous 
porous media. Today it is possible to predict the essential characteristics of  the filling of  a mold 
containing a fiber preform using computer-aided design models such as the LIMS package 
(Bruschke and Advani 1993a). This and other similar models for resin flow in fiber preforms are 
based on Darcy 's  law for flow in porous media (Darcy 1856), according to which the local 
volume-averaged fluid velocity is proportional  to the local pressure gradient. The constant of  
proportionality is the permeabi l i t y  of  the porous medium. Even though Darcy's  model is a robust 
and well-accepted description of flow in porous media (Parnas and Phelan 1991), its success in 
simulating flow in fiber preforms depends critically on the quality of  available data for the 
permeability and, most importantly, its variation throughout the preform. A significant amount  
of  research has been devoted to deriving predictive models for the permeability of  systems 
consisting of uniform, aligned cylinders (Sangani and Acrivos 1982; Drummond  and Tahir 1984; 
Gebar t  1992; Bruschke and Advain 1993b). Such models are usually in good agreement with 
experimental data for flow of  Newtonian and shear-thinning fluids across experimental beds of  
aligned fibers, as well as with numerical calculations for flow of  Newtonian and shear-thinning 
fluids across unit cells representing similar systems. Refinements to include the effect of  
perturbations in fiber size and spacing have more recently been introduced (Lundstrom and Gebar t  
1995). 

The significant progress outlined above notwithstanding, difficulties still remain in predicting, 
reliably, the flow patterns during resin impregnation of  a fiber preform. The main reason for this 
is the simple fact that a fiber preform is never a bed of uniform, aligned fibers. Heterogeneities 
exist, either as a (deliberate or accidental) result of  the preform fabrication process or as a 
consequence of  the filling process itself. Such heterogeneities range from through-thickness 
variations in structure, to the presence of  air pockets within fiber tows due to poor resin 
impregnation (Pillai et al. 1993; Pillai and Advani 1995) to the compaction of  the preform at 
elevated filling rates (Gutowski et al. 1987; Skartsis et al. 1992; Lam and Kardos 1991). It is now 
clear in the composites literature (Parnas and Phelan 1991; Pillai et al. 1993; Pillai and Advani 1995; 
Sadiq et aL 1995; Summerscales 1993) that an important source of  flow irregularities, such as flow 
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fingering, the dependence of  permeability on flowrate or on the degree of bed saturation and the 
formation of voids during preform impregnation, is the wide difference in pore size between the 
inter- and the intra-tow regions. It is evident that under a pressure gradient, resin will flow through 
both, the inter- and the intra-tow space, each of which will contribute to the overall flow resistance 
of the medium. Three distinct length scales must therefore be considered in a realistic model for 
flow through fiber preforms (Lundstrom and Gebart  1995; Pillai and Advani 1995): A macro-scale 

(related to the leading dimension of the composite part), a meso-scale  (related to the size of bundles 
of fibers (tows) comprising the preform) and a micro-scale (associated with the size of the individual 
filaments comprising each tow). Two porosities can thus be distinguished: a meso-scale porosity 
(or, inter-tow porosity, (~b~)), defined as the voidage between fiber tows in the preform, and a 
micro-scale porosity (or, intra-tow porosity, (~b~)), defined as the voidage between individual 
filaments inside a tow. 

From the preceding discussion it becomes clear that treating fiber tows as impermeable entities 
is, in principle, incorrect. It has indeed been shown (Sadiq et al. 1995) that, when individual fibers 
are replaced with fiber bundles of equal total diameter in a test fiber-bed, the measured 
permeabilities are not in agreement with the predictions of existing theoretical models. The effective 
permeability of  the new assembly was found to be closer to the permeability of systems comprised 
of solid, impermeable tows than to the permeability of systems consisting of uniformly distributed 
fibers with diameter equal to that of the filaments in each tow at the same overall volume fraction. 
Sadiq et al. (1995) have also shown that neither the global fiber volume fraction nor the fiber 
volume fraction inside the tow are suitable parameters to be used in existing theoretical models 
to calculate (Kp). Instead, they proposed that correlations of the form 

Kp 1 q- klZ -I- -Z- -[- k3z + ' [1] - - =  k ,  ~ ~ 3  

K~ 

should be used in relating the permeability ratio (Kp/Ks) to the effective intra-tow porosity (Z) 
(defined as g = 1 - (1 - q~d/(1 - q~mad)- In [1] (Ks) is the permeability of an array of impermeable 
cylinders of  the same size as the fiber tows and use of (Z) is consistent with scalings adopted in 
previous analyses of flow through particle clusters (Lewis and Nielsen 1970; Phan-Thien et al. 
1991). 

In spite of the growing realisation of the importance of the inter- and intra-tow length scales, 
only limited results (theoretical or experimental) exist in quantifying the effect of the interplay 
between meso- and micro-scale porosities on the permeability of a fiber preform. Based on 
geometrical arguments, Summerscales (1993) proposed a procedure to determine the effect of fiber 
clustering on permeability through the use of a modified hydraulic radius. The predictions of this 
model are in qualitative agreement with the experimental observation that fiber clustering results 
in an enhanced resin flow compared to a uniform distribution of the same number of fibers. Parnas 
and Phelan (1991) addressed the problem of the coupling of the flow of resin through the voids 
separating fiber tows with the microscopic flow associated with the impregnation of individual 
tows, by considering the latter as flow sinks which remove fluid from the main (macroscopic) flow 
as the resin fills a dry preform. In qualitative agreement with experimental observations, their model 
predicts that the two competing flow processes result in an effective permeability which is higher 
in dry preforms than in saturated ones. Pillai et al. (1993) and Pillai and Advani (1995) recognised 
explicitly the importance of multiple length scales on the effective permeability of a fiber-tow 
assembly. They considered Stokes' flow in the inter-tow space, treated the intra-tow region as a 
porous medium with an effective permeability 0c) and took into account the presence of pockets 
of air trapped within fiber tows. The difficulty associated with matching the boundary conditions 
for the two problems at the tow-fluid interface was bypassed by replacing Darcy's model in the 
intra-tow region with Brinkman's equation. Pillai and Advani developed an analytical model for 
the effective permeability of  this system based on lubrication theory and compared its predictions 
to those of the CFD package FIDAP. Even though the predictions of this model were in qualitative 
agreement with experimental evidence, they were found sensitive to the value of the effective 
intra-tow permeability (r). Quantitative agreement between model predictions and experiment 
could not be obtained when ~ was calculated from existing models (e.g. Gebart 1992 or Bruschke 
and Advani 1993b) and a heuristic approach to obtain better estimates for ~: was suggested by 
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Pillai et al. (1993). Along the same lines, Phelan and Wise (1996) developed a semi-analytical model 
for the effective permeability of arrays of fiber tows with elliptical crossection. The predictions of 
their model were in good agreement with finite element results using the CFD package FIDAP 
and in reasonable agreement with the experimental data of Sadiq et al. (1995). The main difficulty 
in this approach lies in assigning physically realistic values to the intra-tow permeability and in 
the use of the Brinkman equation to describe the flow inside fiber tows. The suitability of the latter 
in modelling viscous flow near the surface of a porous medium has been questioned by Larson 
and Higdon (1986, 1987), who have carried out extensive computations for Stokes flow past a 
semi-infinite lattice of cylindrical inclusions. These computations indicated that flow over the 
surface of such a porous medium is inherently a surface phenomenon, with an extremely rapid 
decay of velocities even at low concentrations of the particulate phase, and that attempts to describe 
it in terms of averaged quantities will miss important details. Further development of such models 
will definitely benefit from more extensive experimentation and, hopefully, from comparisons with 
the results of micromechanical computations such as those presented in this study. A more detailed 
comparison between computations similar to those presented in the present study and the results 
of the model proposed by Phelan and Wise (1996) is currently under way. 

The objective of the present communication is to further quantify the effect of the inter- and 
intra-tow porosities on the apparent transverse permeability of arrays of permeable fiber tows and 
to suggest appropriate scalings. In a manner similar to previous investigations using the BEM in 
multi-particle systems (Larson and Higdon 1986, 1987; Papathanasiou 1996) the equations 
governing Stokes' flow are solved in the entire region occupied by the fluid in both the inter- and 
intra-tow regions. Microstructural characteristics of the tow are therefore directly reflected in the 
thus determined effective permeabilities and furthermore, assumptions about the physics of the flow 
at the fluid-tow interface are avoided. These are considered the main strengths of the present 
methodology. A large number of simulations is performed for a range of inter- and intra-tow 
porosities; based on these results we propose models for the effective permeability in which the 
influence of (~b,) and (~b~) is explicitly included. It should be pointed out that since the fluid is 
considered to occupy the entire inter-filament space, our results correspond to the permeability of 
fully-saturated systems. 

2. THE MATHEMATICAL MODEL 

The flow transverse to an assembly of permeable fiber tows (including flow in the inter- and 
intra-tow regions) is modelled as linear, incompressible and inertialess. In the absence of body 
forces, the equations governing such flow in a general multi-connected domain (l)) can be written 
as (Pozrikidis 1992; Ladyzhenskaya 1963): 

a2ui(x) c~P(x) 
x e f~ (momentum) [2] 

8x j Sx~ -  ~x~ 

~u,(x) 
8x~ - 0 x ~f~ (continuity) [3] 

where u and x are the velocity and location vectors, respectively. The components of the traction 
vector t, needed in the boundary integral formulation of the Stokes' problem, are obtained from 
the total stress tensor (T) as: 

ND 

ti = E Tijnj [41 
j = l  

where ND = 2 for two- and ND = 3 for three-dimensional problems, respectively, and n is the local 
vector normal to the boundary. 

2.1. The Boundary Element Method 

The application of the BEM in the solution of Stokes flow problems in complex, 
multiply-connected domains is well-documented (Phan-Thien et al. 1991; Ingber and Li 1991; 
Pozrikidis 1992; Brebbia and Dominguez 1992). Briefly, in the BEM the original Stokes problem 
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is recast in an integral form by considering a weighted residual statement of the differential 
equations with weighting functions given by the fundamental solutions for velocity and tractions 
(u*, t*). The resulting Boundary Integral Equation (BIE) is: 

c,,,(#)u,(#) + £ t*,(~, x)u,(x)dS = £ u*,,(~, x)t,(x)dS [5] 

where ~ indicates a field point and the integrals are in the sense of Cauchy principal values. In 
two dimensions, the fundamental solution for the velocity and the associated solution for the 
tractions are given by: 

and 

1 [ r,,r, d u* = u*,e,, where u*, = ~-~. ln(Irl ')am, + I ~ J  [61 

1 rmrn 6~r t*=t*,em where t* ,= [7] rt Irl 3 On' 

r is the vector between ~ and x, r, and rm indicate the projections of r in each of the principal 
directions of the global coordinate system and e,~ indicates the unit vector in the direction m. The 
BIE is discretised by subdividing the domain boundary into boundary segments (elements) within 
which the velocities and tractions are given polynomial approximations with the use of 
Langrangian shape functions. Following numerical evaluation of the boundary integrals and 
introduction of the influence matrices (H and G), the global system of equations can be written 
a s~  

[Hl . {u}  = [G]. {t}. [81 

This system is further rearranged by separating the parts of the u and t vectors known from the 
boundary conditions (Papathanasiou et al. 1994) and the resultant system of linear equations is 
solved for the unknown velocities and tractions on the boundaries of the computational domain. 
The velocities at points in the interior of the flow domain can be obtained from the solution at 
the boundary in a simple post-processing step using Somigliana's identity (Brebbia and Dominguez 
1992). 

3. RESULTS AND DISCUSSION 

The effect of the microstructure on the transverse permeability (Kp) of arrays of permeable, 
multi-fiber tows of circular cross-section is investigated through numerical solution of the Stokes 
equations in unit cells of the type shown in figure 1 for various combinations of the inter- and the 
intra-tow porosities. The inter-tow porosity is defined as 

R~ 
(ai = 1 HL 2'  

where R, is the radius of the tow and H and L are the length and height of the unit cell. The 
arrangement of the fibers inside the tow is in regular square array and each tow contains at least 
60 fibers. It was determined (Papathanasiou 1996) that for Nf > 60, the predicted permeability was 
roughly independent of the number of fibers in the tow. The intra-tow porosity is defined as 

= I -  N f R q  LYtj, 
where Nf is the number and Rf the radius of the (cylindrical) filaments in each tow. Following 
solution of the Stokes equations, Kp is determined through numerical integration of the computed 
outflow velocity profile. The boundary conditions used were with (reference to figure 1): symmetry 
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condi t ions a long the top and b o t t o m  boundaries ,  fixed pressure d rop  between right and left 
boundar ies  and no-slip condi t ions on the surface of  the fibers. 

3. I. Flow distribution through the unit cell 

Figure 1 shows typical mult i-f i lament unit  cells used in the computa t ions  o f  this study, a long 
with numer ica l ly -computed  trajectories of  (massless) t racer  particles placed at  var ious locations 
a long the lef t-hand (inlet) bounda ry  o f  the unit  cell. I t  is evident f rom the fo rm o f  these trajectories 
that  the flow "senses"  the presence o f  the tow and re-distributes itself to take advantage  of  the 
low resistance region near  the " t o p "  symmet ry  line. Weak  recirculation regions near  the lower 
symmet ry  axis appea r  to persist  even for  in t ra- tow porosit ies as high as 70%. It  is also seen that  
even at in t ra- tow porosit ies as high as 50% the tow behaves largely as an impermeable  entity, with 
only a small pa r t  o f  the mater ia l  flowing through the unit cell travelling th rough  the tow itself. 
As the internal poros i ty  increases further  to 60 and 70%, progressively more  o f  the tracer  particles 
actually pass through the tow. 

!Prier II d l  leOSO.pR II 

oto_O, o_O_Q o o gp_gJo 

; ? l i r  ; i [ ; !oz, ] l~ j  

Figure 1. Typical multi-fiber unit cells used in the computations of the effective permeability of assemblies 
of permeable fiber tows, along with the trajectories of tracer particles. Conditions are (A): ~b+ = 0.6, 

~l = 0.4; (B): 4,, = 0.6, ~,t = 0.5; (C): 4,i = 0.6, (~t = 0.6; (D): ~i = 0.6, @, = 0.7. 
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Figure 2. Velocity profiles along the right-hand vertical boundary of the unit cell (as shown in figure 1) 
corresponding to an inter-tow porosity of 0.3, at various levels of the intra-tow porosity. The result for 
an impermeable tow ("rigid particle") is shown as the solid line to the left. Velocities are normalised with 

respect to the maximum velocity corresponding to an impermeable tow. 

The effect of the intra-tow porosity on the distribution of flow in the unit cell at lower values 
of the inter-tow porosity (~b~ = 0.3) is further shown in figure 2, in which the velocity profile along 
the right-hand vertical boundary is plotted for values of the intra-tow porosity ranging from 0.405 
to 0.616. The velocity profile corresponding to an impermeable tow is also shown for comparison. 
In figure 2 the computed velocities have been normalised by dividing with the maximum velocity 
corresponding to an impermeable tow. It is seen that as ~b, increases, the outflow velocity profiles 
become substantially and qualitatively different from the one corresponding to an impermeable 
tow. This is typical of unit cells with low porosity. It is also seen that as qSt increases, progressively 
more fluid passes through the channel between the first two rows of intra-tow fibers (located at 
y - -0 .05  on the vertical axis of figure 2. 

3.2, The effective permeabili ty o f  the tow array 

The work of Sadiq et al. (1995) has indicated that the effective permeability of arrays of fiber 
bundles cannot be predicted by existing theoretical models (such as those of Gebart 1992 and 
Bruschke and Advani 1993b) which have been derived from unit-cells containing one impermeable 
fiber. It has been shown that Kp is closer to the permeability of a system comprised of solid, 
impermeable tows than to a system comprised of uniformly distributed fibers with diameter equal 
to that of the filaments in each tow at the same overall volume fraction. Sadiq et al. (1995) have 
also shown that neither the global fiber volume fraction nor the fiber volume fraction inside the 
tow are suitable parameters to be used in existing theoretical models to calculate Kp. These 
observations have been confirmed in the context of the present study. This result is not surprising, 
since it is known that the flow-resistance of a cluster of particles is larger than justified by the 
volume fraction of the particles alone; in particle clusters, the liquid in the neighbourhood of the 
particles is "immobilised" and contributes to an effective particle volume fraction which is greater 
than the actual volume fraction of the particles. This has been recognised in previous theoretical 
studies of flow in fibrous porous media (Gebart 1992; Gutowski et al. 1987) and consequently, the 
fiber volume fraction at maximum packing (qSm,x or qSm) has been included in the adopted scalings. 
The same approach was followed by Sadiq et al. (1995) in using [1] to interpret experimental data 
for the effective permeability of arrays of fiber bundles. Our objective here is to further quantify 
the influence of the meso- and micro-scale porosities of the unit cell on the effective permeability 
of the system by carrying out a number of detailed simulations in which the microstructure of the 
tow is carefully controlled. In these simulations the inter-tow porosity q~ varied between 0.25 and 
0.7 and the intra-tow porosity qS, between 0.3 and 0.6. 
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Tab le  1. Results o f  the BEM  c o m p u t a t i o n s  in t e rms  of  the rat io Kp/K~ for  a range  
o f  the inter- ~b, a nd  the in t ra - tow ~b~ porosities.  Th e  effective in t ra - tow porosi ty  Z is 

defined as: ;( = 1 - (1 - ~,)/(1 - ~m~x). ~bm~ = 1 -- n /4  

Z (j~i = 0 . 2 5  ~i  = 0 . 3 0  ~i  = 0 . 3 5  (~i = 0 . 4 0  ~b~ = 0 . 5 0  ~ = 0 . 6 0  tk, = 0 . 7 0  

0.096 1.46 1.10 1.03 1.03 1.02 - -  - -  
0.12 1.72 1.18 1.07 1.06 1.03 - -  - -  
0.15 2.08 1.26 1.11 1.09 1.05 1.04 1.03 
0.17 2.45 1.35 1.16 1.12 1.07 - -  - -  
0.19 2.93 1.45 1.21 1.15 1.09 1.06 - -  
0.22 3.46 1.55 1.26 1.18 1.10 - -  - -  
0.23 3.78 1.61 1.28 1.20 1.11 - -  - -  
0.24 4.13 1.79 1.32 1.25 1.15 1.10 1.06 
0.27 5.44 1.92 1.38 1.29 - -  
0.28 . . . .  1.19 1.12 - -  
0.33 7.99 2.33 1.55 1.40 1.23 1.14 1.09 
0.39 11.4 2.84 1.75 1.54 1.31 1.18 1.11 
0.45 - -  - -  - -  1.68 1.35 1.22 - -  
0.51 22.1 4.28 2.28 - -  - -  1.16 
0.63 . . . . . .  1.21 

The results of  the BEM computations are presented in table 1 in terms of the permeability ratio 
(Kp/Ks). The permeability of  the corresponding array of impermeable cylinders (Ks) has been 
calculated separately through the BEM using meshes of  size comparable to that used in the 
multi-fiber calculations. It is recognised that presentation of the results in terms of  the ratio Kp/K~ 
may be problematic when the inter-tow porosity approaches maximum packing, at which point 
Ks drops sharply to zero (while Kp assumes a non-zero value). In the present study Ks is only used 
for ease of  presentation and to facilitate comparisons; the value of Kp is the primary quantity 
calculated directly from the outflow velocity profile for each combination of ~ and ~b~. 

It can be seen from the data of table 1 that the relationship between Kp and g is distinctively 
non-linear, especially at lower values of  the inter-tow porosity (~b~ < 0.4). Even in the case of higher 
~b~, when a straight line can be "fitted" through the BEM results, as shown in figure 3, it is clear 
that the resultant least-squares lines have intercepts that deviate consistently from unity. The 
intercepts of  the least-squares fits between Kp/Ks and ;( corresponding to (~i : {0.4, 0.5, 0.6, 0.7} are 
{0.814, 0.904, 0.949, 0.968}, respectively. This is of  course unacceptable, since the ratio Kp/Ks must 
approach asymptotically unity as Z approaches zero (or, a s  (~t approaches ~bm,~) and suggests the 
existence of  a non-linear relationship between Kp/K~ and Z. 
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Figure  3. Permeabi l i ty  rat io Kp/K, as funct ion of  the effective in t ra - tow poros i ty  for  four  values o f  the 
in ter- tow poros i ty  ~b,. Also shown as b roken  lines are  fitted linear funct ions o f  the fo rm (Kp/K~) = AZ + B; 

Z = I - (1 - 4,,)/(I - ~m~,). 
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are also the fitted funct ions  of  the form of  [9]. 

The BEM results can be better visualised in terms of an "intrinsic" permeability, defined as 

Kio =- Kp 1. 
K~ 

By plotting Km against the effective intra-tow porosity X as shown in figure 4, it becomes evident 
that a power-law relationship exists between [(Kp/Ks) - 1] and (Z): 

Kin - Kp 1 = e(q~i)')¢ (~'~ [91 
Ks 

where the coefficients e and fl are functions of the inter-tow porosity ~b~. Equation [9] exhibits the 
anticipated asymptotic behaviour as Z---+ 0 and is capable of representing the BEM results, with 
reasonable accuracy, for the entire range of 4~t and q~ examined. The fitted functions of the form 
of  [9] are also shown as broken lines in figure 4. Table 2 lists the least-squares values of the 
parameters e and fl for the range of ~b~ considered. It is evident that e is indeed a very strong 
function of  the inter-tow porosity. 

The results of  table 2 for e can be represented well by functions of  the form: 

2 
a(~i) - (q~_ 4~m)a for q~ > 1 - 7t/4 [10] 

as can be seen in figure 5, where 2 and 6 are parameters to be determined. Best-fit estimates of 
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Table 2. Values of  the par- 
ameters ct and fl [9] obtained 
from least-squares fitting of  the 
BEM computat ional  results, for 
various values of  the inter-tow 

porosity ~b, 

0.25 112 2.49 
0.30 12.7 2.03 
0.35 4.63 1.92 
0.40 2.78 1.75 
0.50 1.39 1.65 
0.60 0.689 1.42 
0.70 0.396 1.37 

2 and 6 are shown in figure 5, along with the corresponding confidence intervals. Through [10], 
[9] can be written explicitly in terms of ~ and ~b~ as: 

Ks ( ~ i  (]~m)' 1 ~-~J [111 

where Ks can be calculated from existing models (Bruschke and Avain 1993b; Gebart 1992), fl(~b,) 
can be found from table 2 and the values of 2 and 6 are shown in figure 5. Equation [11] derives 
from the computational results of the present study and comprises an empirical predictive model 
for the effective permeability of arrays of permeable fiber tows, in which the influence of the two 
porosities ~b~ and ~b, is explicitly present. The model contains three parameters (2, fl and 6) whose 
values, for square packing of fibers, have been determined from the BEM results of the present 
study. 

3.3. A model for Kp in the range of low porosities 

It was pointed out by one of the reviewers that combinations of high values of ~b, with low values 
of ~b~ are unrealistic in the field of composites manufacturing, since one cannot pack fiber tows 
without packing the fibers themselves. This is of course correct. We chose to present the results 
of our computations for the entire range of ~b~ and ~bt examined in the previous section in order 
to give a more complete picture. Combinations of high ~b, with low ~b~ can be encountered in other 
applications involving flow through arrays of fiber clusters, for example in hollow-fiber bioreactors, 
heat exchangers or flow of concrete through reinforcing steel preforms. In this section we 
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2 and 6 are also shown. 
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Table 3. Values of the par- 
ameters cc and /3 [9] obtained 
from least-squares fitting of the 
BEM computational results at 

lower values of ~b~ and qS, 

~bi c~ fl 

0.25 61.3 2.11 
0.30 15.9 2.17 
0.35 5.76 2.05 
0.40 4.24 2.03 
0.50 2.58 2.07 

concentrate on the interpretation of the BEM results at a range of inter- and intra-tow 
porosities more likely to be encountered in composites manufacturing, namely qS, < 0.50 and 
qSt < 0.45. 

When [9] is fitted through the BEM results of figure 4 at the lower porosity end (by con- 
sidering the points with 4~,<0.4 for ~b~=0.25 and the points with gb,<0.45 for 
~b~ = {0.3, 0.35, 0.4, 0.5}), the obtained power-law exponents are largely independent of (])i as  
can be seen in table 3. 

Furthermore, the values obtained for c~ can be fitted remarkably well to [10], as shown in figure 6. 
Table 3 and figure 6 suggests that the BEM results at these levels of porosity should collapse into 
a single curve, with power-law exponent around 2.1, if the quantity 

is plotted against the effective intra-tow porosity Z. When the original computational results 
are transformed as suggested by [12], they do, to a reasonable degree, collapse on a single 
curve as shown in figure 7. This suggests that for the range of lower inter- and intra-tow porosities 
outlined previously, the permeability of a square assembly of permeable fiber tows (with square 
packing of  the intra-tow filaments) can be expressed as a power-law function of Z: 

Kp J~ "Z 2A for qSt < 0.45 and 0.25 < 4~ < 0.5 [13] - - " ~  1 + 
Ks - ( ~ ) i -  ~ b r n )  6 

with the values of 2 and ~ obtained from figure 6, 

if' 
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Figure 6. Functions of the form of [10] (broken lines), fitted through the calculated values of t h e  p a r a m e t e r  
c¢ (points) for the range of lower inter- and intra-tow porosities. The estimated values of the parameters 

2 and 6 are also shown. 
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- ~ - ~,.)~ K~(K ,- 1 ) . ( ~ b '  ). 

with X (2 and  6 are f rom figure 6, ob ta ined  for lower values o f  inter-  and  in t ra - tow porosit ies)  sugges t ing  
tha t  the t r ans fo rmed  da ta  collapse on to  the curve  f ( ; 0  = ;(2~ (broken  line). Fl: ~ = 0.25; x :  ~b, = 0.30; 

~ :  ~b, = 0.35; I :  tk~ = 0.40; + :  ~b~ = 0.50. 

4. CONCLUSIONS 

The interaction between inter- and intra-tow structure during Stokes flow across arrays of fiber 
tows aligned normal to the main direction of flow and its effect on the macroscopic permeability 
has been studied computationally using the method of boundary elements. A uniform 
square packing of fiber tows is considered, in which each unit cell consists of one tow containing 

a number of fiber-like filaments arranged again in square packing. Computer simulations for tk~ 
between 25 and 70% and (~t between 30 and 60% suggest that a power-law relationship of the form: 

Kp = 1 + ~Z p 
K~ 

where a and fl are functions of ~ ,  can describe the dependence of the effective permeability of the 
assembly on ~b, and ~b~. In the region of low inter- and intra-tow porosities (which is of practical 
significance in the field of composites manufacturing), a scaling is proposed according to which 
the computational results for Kp (0.25 < ~ < 0.5) collapse on a power-law curve with exponent 
2.1 when plotted as suggested by [12] against the effective intra-tow porosity Z. 
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